Step |
Hyp |
Ref |
Expression |
1 |
|
df-res |
|- ( R |` A ) = ( R i^i ( A X. _V ) ) |
2 |
1
|
cnveqi |
|- `' ( R |` A ) = `' ( R i^i ( A X. _V ) ) |
3 |
2
|
breqi |
|- ( B `' ( R |` A ) C <-> B `' ( R i^i ( A X. _V ) ) C ) |
4 |
|
elex |
|- ( B e. V -> B e. _V ) |
5 |
|
br1cnvinxp |
|- ( B `' ( R i^i ( A X. _V ) ) C <-> ( ( B e. _V /\ C e. A ) /\ C R B ) ) |
6 |
|
anass |
|- ( ( ( B e. _V /\ C e. A ) /\ C R B ) <-> ( B e. _V /\ ( C e. A /\ C R B ) ) ) |
7 |
5 6
|
bitri |
|- ( B `' ( R i^i ( A X. _V ) ) C <-> ( B e. _V /\ ( C e. A /\ C R B ) ) ) |
8 |
7
|
baib |
|- ( B e. _V -> ( B `' ( R i^i ( A X. _V ) ) C <-> ( C e. A /\ C R B ) ) ) |
9 |
4 8
|
syl |
|- ( B e. V -> ( B `' ( R i^i ( A X. _V ) ) C <-> ( C e. A /\ C R B ) ) ) |
10 |
3 9
|
bitrid |
|- ( B e. V -> ( B `' ( R |` A ) C <-> ( C e. A /\ C R B ) ) ) |