Description: The converse of a binary relation over a range Cartesian product. (Contributed by Peter Mazsa, 11-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | br1cnvxrn2 | |- ( B e. V -> ( A `' ( R |X. S ) B <-> E. y E. z ( A = <. y , z >. /\ B R y /\ B S z ) ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xrnrel | |- Rel ( R |X. S )  | 
						|
| 2 | 1 | relbrcnv | |- ( A `' ( R |X. S ) B <-> B ( R |X. S ) A )  | 
						
| 3 | brxrn2 | |- ( B e. V -> ( B ( R |X. S ) A <-> E. y E. z ( A = <. y , z >. /\ B R y /\ B S z ) ) )  | 
						|
| 4 | 2 3 | bitrid | |- ( B e. V -> ( A `' ( R |X. S ) B <-> E. y E. z ( A = <. y , z >. /\ B R y /\ B S z ) ) )  |