| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							br1cossxrnres | 
							 |-  ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( <. B , C >. ,~ ( R |X. ( `' _S |` A ) ) <. D , E >. <-> E. u e. A ( ( u `' _S C /\ u R B ) /\ ( u `' _S E /\ u R D ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							brcnvssr | 
							 |-  ( u e. _V -> ( u `' _S C <-> C C_ u ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							elv | 
							 |-  ( u `' _S C <-> C C_ u )  | 
						
						
							| 4 | 
							
								3
							 | 
							anbi1i | 
							 |-  ( ( u `' _S C /\ u R B ) <-> ( C C_ u /\ u R B ) )  | 
						
						
							| 5 | 
							
								
							 | 
							brcnvssr | 
							 |-  ( u e. _V -> ( u `' _S E <-> E C_ u ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							elv | 
							 |-  ( u `' _S E <-> E C_ u )  | 
						
						
							| 7 | 
							
								6
							 | 
							anbi1i | 
							 |-  ( ( u `' _S E /\ u R D ) <-> ( E C_ u /\ u R D ) )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							anbi12i | 
							 |-  ( ( ( u `' _S C /\ u R B ) /\ ( u `' _S E /\ u R D ) ) <-> ( ( C C_ u /\ u R B ) /\ ( E C_ u /\ u R D ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							rexbii | 
							 |-  ( E. u e. A ( ( u `' _S C /\ u R B ) /\ ( u `' _S E /\ u R D ) ) <-> E. u e. A ( ( C C_ u /\ u R B ) /\ ( E C_ u /\ u R D ) ) )  | 
						
						
							| 10 | 
							
								1 9
							 | 
							bitrdi | 
							 |-  ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( <. B , C >. ,~ ( R |X. ( `' _S |` A ) ) <. D , E >. <-> E. u e. A ( ( C C_ u /\ u R B ) /\ ( E C_ u /\ u R D ) ) ) )  |