| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-hilex |
|- ~H e. _V |
| 2 |
1
|
mptex |
|- ( y e. ~H |-> ( y .ih x ) ) e. _V |
| 3 |
|
df-bra |
|- bra = ( x e. ~H |-> ( y e. ~H |-> ( y .ih x ) ) ) |
| 4 |
2 3
|
fnmpti |
|- bra Fn ~H |
| 5 |
|
rnbra |
|- ran bra = ( LinFn i^i ContFn ) |
| 6 |
|
fveq1 |
|- ( ( bra ` x ) = ( bra ` y ) -> ( ( bra ` x ) ` z ) = ( ( bra ` y ) ` z ) ) |
| 7 |
|
braval |
|- ( ( x e. ~H /\ z e. ~H ) -> ( ( bra ` x ) ` z ) = ( z .ih x ) ) |
| 8 |
7
|
adantlr |
|- ( ( ( x e. ~H /\ y e. ~H ) /\ z e. ~H ) -> ( ( bra ` x ) ` z ) = ( z .ih x ) ) |
| 9 |
|
braval |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( bra ` y ) ` z ) = ( z .ih y ) ) |
| 10 |
9
|
adantll |
|- ( ( ( x e. ~H /\ y e. ~H ) /\ z e. ~H ) -> ( ( bra ` y ) ` z ) = ( z .ih y ) ) |
| 11 |
8 10
|
eqeq12d |
|- ( ( ( x e. ~H /\ y e. ~H ) /\ z e. ~H ) -> ( ( ( bra ` x ) ` z ) = ( ( bra ` y ) ` z ) <-> ( z .ih x ) = ( z .ih y ) ) ) |
| 12 |
6 11
|
imbitrid |
|- ( ( ( x e. ~H /\ y e. ~H ) /\ z e. ~H ) -> ( ( bra ` x ) = ( bra ` y ) -> ( z .ih x ) = ( z .ih y ) ) ) |
| 13 |
12
|
ralrimdva |
|- ( ( x e. ~H /\ y e. ~H ) -> ( ( bra ` x ) = ( bra ` y ) -> A. z e. ~H ( z .ih x ) = ( z .ih y ) ) ) |
| 14 |
|
hial2eq2 |
|- ( ( x e. ~H /\ y e. ~H ) -> ( A. z e. ~H ( z .ih x ) = ( z .ih y ) <-> x = y ) ) |
| 15 |
13 14
|
sylibd |
|- ( ( x e. ~H /\ y e. ~H ) -> ( ( bra ` x ) = ( bra ` y ) -> x = y ) ) |
| 16 |
15
|
rgen2 |
|- A. x e. ~H A. y e. ~H ( ( bra ` x ) = ( bra ` y ) -> x = y ) |
| 17 |
|
dff1o6 |
|- ( bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) <-> ( bra Fn ~H /\ ran bra = ( LinFn i^i ContFn ) /\ A. x e. ~H A. y e. ~H ( ( bra ` x ) = ( bra ` y ) -> x = y ) ) ) |
| 18 |
4 5 16 17
|
mpbir3an |
|- bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) |