Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hilex |
|- ~H e. _V |
2 |
1
|
mptex |
|- ( y e. ~H |-> ( y .ih x ) ) e. _V |
3 |
|
df-bra |
|- bra = ( x e. ~H |-> ( y e. ~H |-> ( y .ih x ) ) ) |
4 |
2 3
|
fnmpti |
|- bra Fn ~H |
5 |
|
rnbra |
|- ran bra = ( LinFn i^i ContFn ) |
6 |
|
fveq1 |
|- ( ( bra ` x ) = ( bra ` y ) -> ( ( bra ` x ) ` z ) = ( ( bra ` y ) ` z ) ) |
7 |
|
braval |
|- ( ( x e. ~H /\ z e. ~H ) -> ( ( bra ` x ) ` z ) = ( z .ih x ) ) |
8 |
7
|
adantlr |
|- ( ( ( x e. ~H /\ y e. ~H ) /\ z e. ~H ) -> ( ( bra ` x ) ` z ) = ( z .ih x ) ) |
9 |
|
braval |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( bra ` y ) ` z ) = ( z .ih y ) ) |
10 |
9
|
adantll |
|- ( ( ( x e. ~H /\ y e. ~H ) /\ z e. ~H ) -> ( ( bra ` y ) ` z ) = ( z .ih y ) ) |
11 |
8 10
|
eqeq12d |
|- ( ( ( x e. ~H /\ y e. ~H ) /\ z e. ~H ) -> ( ( ( bra ` x ) ` z ) = ( ( bra ` y ) ` z ) <-> ( z .ih x ) = ( z .ih y ) ) ) |
12 |
6 11
|
syl5ib |
|- ( ( ( x e. ~H /\ y e. ~H ) /\ z e. ~H ) -> ( ( bra ` x ) = ( bra ` y ) -> ( z .ih x ) = ( z .ih y ) ) ) |
13 |
12
|
ralrimdva |
|- ( ( x e. ~H /\ y e. ~H ) -> ( ( bra ` x ) = ( bra ` y ) -> A. z e. ~H ( z .ih x ) = ( z .ih y ) ) ) |
14 |
|
hial2eq2 |
|- ( ( x e. ~H /\ y e. ~H ) -> ( A. z e. ~H ( z .ih x ) = ( z .ih y ) <-> x = y ) ) |
15 |
13 14
|
sylibd |
|- ( ( x e. ~H /\ y e. ~H ) -> ( ( bra ` x ) = ( bra ` y ) -> x = y ) ) |
16 |
15
|
rgen2 |
|- A. x e. ~H A. y e. ~H ( ( bra ` x ) = ( bra ` y ) -> x = y ) |
17 |
|
dff1o6 |
|- ( bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) <-> ( bra Fn ~H /\ ran bra = ( LinFn i^i ContFn ) /\ A. x e. ~H A. y e. ~H ( ( bra ` x ) = ( bra ` y ) -> x = y ) ) ) |
18 |
4 5 16 17
|
mpbir3an |
|- bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) |