| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-his2 |  |-  ( ( B e. ~H /\ C e. ~H /\ A e. ~H ) -> ( ( B +h C ) .ih A ) = ( ( B .ih A ) + ( C .ih A ) ) ) | 
						
							| 2 | 1 | 3comr |  |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( B +h C ) .ih A ) = ( ( B .ih A ) + ( C .ih A ) ) ) | 
						
							| 3 |  | hvaddcl |  |-  ( ( B e. ~H /\ C e. ~H ) -> ( B +h C ) e. ~H ) | 
						
							| 4 |  | braval |  |-  ( ( A e. ~H /\ ( B +h C ) e. ~H ) -> ( ( bra ` A ) ` ( B +h C ) ) = ( ( B +h C ) .ih A ) ) | 
						
							| 5 | 3 4 | sylan2 |  |-  ( ( A e. ~H /\ ( B e. ~H /\ C e. ~H ) ) -> ( ( bra ` A ) ` ( B +h C ) ) = ( ( B +h C ) .ih A ) ) | 
						
							| 6 | 5 | 3impb |  |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( bra ` A ) ` ( B +h C ) ) = ( ( B +h C ) .ih A ) ) | 
						
							| 7 |  | braval |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( bra ` A ) ` B ) = ( B .ih A ) ) | 
						
							| 8 | 7 | 3adant3 |  |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( bra ` A ) ` B ) = ( B .ih A ) ) | 
						
							| 9 |  | braval |  |-  ( ( A e. ~H /\ C e. ~H ) -> ( ( bra ` A ) ` C ) = ( C .ih A ) ) | 
						
							| 10 | 9 | 3adant2 |  |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( bra ` A ) ` C ) = ( C .ih A ) ) | 
						
							| 11 | 8 10 | oveq12d |  |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( ( bra ` A ) ` B ) + ( ( bra ` A ) ` C ) ) = ( ( B .ih A ) + ( C .ih A ) ) ) | 
						
							| 12 | 2 6 11 | 3eqtr4d |  |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( bra ` A ) ` ( B +h C ) ) = ( ( ( bra ` A ) ` B ) + ( ( bra ` A ) ` C ) ) ) |