Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brab1 | |- ( x R A <-> x e. { z | z R A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( z = y -> ( z R A <-> y R A ) ) |
|
| 2 | breq1 | |- ( y = x -> ( y R A <-> x R A ) ) |
|
| 3 | 1 2 | sbcie2g | |- ( x e. _V -> ( [. x / z ]. z R A <-> x R A ) ) |
| 4 | 3 | elv | |- ( [. x / z ]. z R A <-> x R A ) |
| 5 | df-sbc | |- ( [. x / z ]. z R A <-> x e. { z | z R A } ) |
|
| 6 | 4 5 | bitr3i | |- ( x R A <-> x e. { z | z R A } ) |