Metamath Proof Explorer


Theorem brab1

Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011)

Ref Expression
Assertion brab1
|- ( x R A <-> x e. { z | z R A } )

Proof

Step Hyp Ref Expression
1 breq1
 |-  ( z = y -> ( z R A <-> y R A ) )
2 breq1
 |-  ( y = x -> ( y R A <-> x R A ) )
3 1 2 sbcie2g
 |-  ( x e. _V -> ( [. x / z ]. z R A <-> x R A ) )
4 3 elv
 |-  ( [. x / z ]. z R A <-> x R A )
5 df-sbc
 |-  ( [. x / z ]. z R A <-> x e. { z | z R A } )
6 4 5 bitr3i
 |-  ( x R A <-> x e. { z | z R A } )