Step |
Hyp |
Ref |
Expression |
1 |
|
brab2a.1 |
|- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
2 |
|
brab2a.2 |
|- R = { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ph ) } |
3 |
|
opabssxp |
|- { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ph ) } C_ ( C X. D ) |
4 |
2 3
|
eqsstri |
|- R C_ ( C X. D ) |
5 |
4
|
brel |
|- ( A R B -> ( A e. C /\ B e. D ) ) |
6 |
|
df-br |
|- ( A R B <-> <. A , B >. e. R ) |
7 |
2
|
eleq2i |
|- ( <. A , B >. e. R <-> <. A , B >. e. { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ph ) } ) |
8 |
6 7
|
bitri |
|- ( A R B <-> <. A , B >. e. { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ph ) } ) |
9 |
1
|
opelopab2a |
|- ( ( A e. C /\ B e. D ) -> ( <. A , B >. e. { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ph ) } <-> ps ) ) |
10 |
8 9
|
bitrid |
|- ( ( A e. C /\ B e. D ) -> ( A R B <-> ps ) ) |
11 |
5 10
|
biadanii |
|- ( A R B <-> ( ( A e. C /\ B e. D ) /\ ps ) ) |