Description: The law of concretion for a binary relation. (Contributed by NM, 19-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opelopaba.1 | |- A e. _V |
|
| opelopaba.2 | |- B e. _V |
||
| opelopaba.3 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
||
| braba.4 | |- R = { <. x , y >. | ph } |
||
| Assertion | braba | |- ( A R B <-> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopaba.1 | |- A e. _V |
|
| 2 | opelopaba.2 | |- B e. _V |
|
| 3 | opelopaba.3 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
| 4 | braba.4 | |- R = { <. x , y >. | ph } |
|
| 5 | 3 4 | brabga | |- ( ( A e. _V /\ B e. _V ) -> ( A R B <-> ps ) ) |
| 6 | 1 2 5 | mp2an | |- ( A R B <-> ps ) |