Metamath Proof Explorer


Theorem braba

Description: The law of concretion for a binary relation. (Contributed by NM, 19-Dec-2013)

Ref Expression
Hypotheses opelopaba.1
|- A e. _V
opelopaba.2
|- B e. _V
opelopaba.3
|- ( ( x = A /\ y = B ) -> ( ph <-> ps ) )
braba.4
|- R = { <. x , y >. | ph }
Assertion braba
|- ( A R B <-> ps )

Proof

Step Hyp Ref Expression
1 opelopaba.1
 |-  A e. _V
2 opelopaba.2
 |-  B e. _V
3 opelopaba.3
 |-  ( ( x = A /\ y = B ) -> ( ph <-> ps ) )
4 braba.4
 |-  R = { <. x , y >. | ph }
5 3 4 brabga
 |-  ( ( A e. _V /\ B e. _V ) -> ( A R B <-> ps ) )
6 1 2 5 mp2an
 |-  ( A R B <-> ps )