Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 19-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opelopabg.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| opelopabg.2 | |- ( y = B -> ( ps <-> ch ) ) |
||
| brabg.5 | |- R = { <. x , y >. | ph } |
||
| Assertion | brabg | |- ( ( A e. C /\ B e. D ) -> ( A R B <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopabg.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | opelopabg.2 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 3 | brabg.5 | |- R = { <. x , y >. | ph } |
|
| 4 | 1 2 | sylan9bb | |- ( ( x = A /\ y = B ) -> ( ph <-> ch ) ) |
| 5 | 4 3 | brabga | |- ( ( A e. C /\ B e. D ) -> ( A R B <-> ch ) ) |