Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opelopabga.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
brabga.2 | |- R = { <. x , y >. | ph } |
||
Assertion | brabga | |- ( ( A e. V /\ B e. W ) -> ( A R B <-> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabga.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
2 | brabga.2 | |- R = { <. x , y >. | ph } |
|
3 | df-br | |- ( A R B <-> <. A , B >. e. R ) |
|
4 | 2 | eleq2i | |- ( <. A , B >. e. R <-> <. A , B >. e. { <. x , y >. | ph } ) |
5 | 3 4 | bitri | |- ( A R B <-> <. A , B >. e. { <. x , y >. | ph } ) |
6 | 1 | opelopabga | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. { <. x , y >. | ph } <-> ps ) ) |
7 | 5 6 | bitrid | |- ( ( A e. V /\ B e. W ) -> ( A R B <-> ps ) ) |