| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							brabgaf.0 | 
							 |-  F/ x ps  | 
						
						
							| 2 | 
							
								
							 | 
							brabgaf.1 | 
							 |-  ( ( x = A /\ y = B ) -> ( ph <-> ps ) )  | 
						
						
							| 3 | 
							
								
							 | 
							brabgaf.2 | 
							 |-  R = { <. x , y >. | ph } | 
						
						
							| 4 | 
							
								
							 | 
							df-br | 
							 |-  ( A R B <-> <. A , B >. e. R )  | 
						
						
							| 5 | 
							
								3
							 | 
							eleq2i | 
							 |-  ( <. A , B >. e. R <-> <. A , B >. e. { <. x , y >. | ph } ) | 
						
						
							| 6 | 
							
								4 5
							 | 
							bitri | 
							 |-  ( A R B <-> <. A , B >. e. { <. x , y >. | ph } ) | 
						
						
							| 7 | 
							
								
							 | 
							elopab | 
							 |-  ( <. A , B >. e. { <. x , y >. | ph } <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) ) | 
						
						
							| 8 | 
							
								
							 | 
							elisset | 
							 |-  ( A e. V -> E. x x = A )  | 
						
						
							| 9 | 
							
								
							 | 
							elisset | 
							 |-  ( B e. W -> E. y y = B )  | 
						
						
							| 10 | 
							
								
							 | 
							exdistrv | 
							 |-  ( E. x E. y ( x = A /\ y = B ) <-> ( E. x x = A /\ E. y y = B ) )  | 
						
						
							| 11 | 
							
								
							 | 
							nfe1 | 
							 |-  F/ x E. x E. y ( <. A , B >. = <. x , y >. /\ ph )  | 
						
						
							| 12 | 
							
								11 1
							 | 
							nfbi | 
							 |-  F/ x ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps )  | 
						
						
							| 13 | 
							
								
							 | 
							nfe1 | 
							 |-  F/ y E. y ( <. A , B >. = <. x , y >. /\ ph )  | 
						
						
							| 14 | 
							
								13
							 | 
							nfex | 
							 |-  F/ y E. x E. y ( <. A , B >. = <. x , y >. /\ ph )  | 
						
						
							| 15 | 
							
								
							 | 
							nfv | 
							 |-  F/ y ps  | 
						
						
							| 16 | 
							
								14 15
							 | 
							nfbi | 
							 |-  F/ y ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps )  | 
						
						
							| 17 | 
							
								
							 | 
							opeq12 | 
							 |-  ( ( x = A /\ y = B ) -> <. x , y >. = <. A , B >. )  | 
						
						
							| 18 | 
							
								
							 | 
							copsexgw | 
							 |-  ( <. A , B >. = <. x , y >. -> ( ph <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							eqcoms | 
							 |-  ( <. x , y >. = <. A , B >. -> ( ph <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) ) )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							syl | 
							 |-  ( ( x = A /\ y = B ) -> ( ph <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) ) )  | 
						
						
							| 21 | 
							
								20 2
							 | 
							bitr3d | 
							 |-  ( ( x = A /\ y = B ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) )  | 
						
						
							| 22 | 
							
								16 21
							 | 
							exlimi | 
							 |-  ( E. y ( x = A /\ y = B ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) )  | 
						
						
							| 23 | 
							
								12 22
							 | 
							exlimi | 
							 |-  ( E. x E. y ( x = A /\ y = B ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) )  | 
						
						
							| 24 | 
							
								10 23
							 | 
							sylbir | 
							 |-  ( ( E. x x = A /\ E. y y = B ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) )  | 
						
						
							| 25 | 
							
								8 9 24
							 | 
							syl2an | 
							 |-  ( ( A e. V /\ B e. W ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) )  | 
						
						
							| 26 | 
							
								7 25
							 | 
							bitrid | 
							 |-  ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. { <. x , y >. | ph } <-> ps ) ) | 
						
						
							| 27 | 
							
								6 26
							 | 
							bitrid | 
							 |-  ( ( A e. V /\ B e. W ) -> ( A R B <-> ps ) )  |