Metamath Proof Explorer


Theorem bracnvbra

Description: The bra of the converse bra of a continuous linear functional. (Contributed by NM, 31-May-2006) (New usage is discouraged.)

Ref Expression
Assertion bracnvbra
|- ( T e. ( LinFn i^i ContFn ) -> ( bra ` ( `' bra ` T ) ) = T )

Proof

Step Hyp Ref Expression
1 bra11
 |-  bra : ~H -1-1-onto-> ( LinFn i^i ContFn )
2 f1ocnvfv2
 |-  ( ( bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) /\ T e. ( LinFn i^i ContFn ) ) -> ( bra ` ( `' bra ` T ) ) = T )
3 1 2 mpan
 |-  ( T e. ( LinFn i^i ContFn ) -> ( bra ` ( `' bra ` T ) ) = T )