Metamath Proof Explorer


Theorem brafn

Description: The bra function is a functional. (Contributed by NM, 23-May-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion brafn
|- ( A e. ~H -> ( bra ` A ) : ~H --> CC )

Proof

Step Hyp Ref Expression
1 brafval
 |-  ( A e. ~H -> ( bra ` A ) = ( x e. ~H |-> ( x .ih A ) ) )
2 hicl
 |-  ( ( x e. ~H /\ A e. ~H ) -> ( x .ih A ) e. CC )
3 2 ancoms
 |-  ( ( A e. ~H /\ x e. ~H ) -> ( x .ih A ) e. CC )
4 1 3 fmpt3d
 |-  ( A e. ~H -> ( bra ` A ) : ~H --> CC )