Step |
Hyp |
Ref |
Expression |
1 |
|
hvmulcl |
|- ( ( A e. CC /\ B e. ~H ) -> ( A .h B ) e. ~H ) |
2 |
|
brafval |
|- ( ( A .h B ) e. ~H -> ( bra ` ( A .h B ) ) = ( x e. ~H |-> ( x .ih ( A .h B ) ) ) ) |
3 |
1 2
|
syl |
|- ( ( A e. CC /\ B e. ~H ) -> ( bra ` ( A .h B ) ) = ( x e. ~H |-> ( x .ih ( A .h B ) ) ) ) |
4 |
|
cjcl |
|- ( A e. CC -> ( * ` A ) e. CC ) |
5 |
|
brafn |
|- ( B e. ~H -> ( bra ` B ) : ~H --> CC ) |
6 |
|
hfmmval |
|- ( ( ( * ` A ) e. CC /\ ( bra ` B ) : ~H --> CC ) -> ( ( * ` A ) .fn ( bra ` B ) ) = ( x e. ~H |-> ( ( * ` A ) x. ( ( bra ` B ) ` x ) ) ) ) |
7 |
4 5 6
|
syl2an |
|- ( ( A e. CC /\ B e. ~H ) -> ( ( * ` A ) .fn ( bra ` B ) ) = ( x e. ~H |-> ( ( * ` A ) x. ( ( bra ` B ) ` x ) ) ) ) |
8 |
|
his5 |
|- ( ( A e. CC /\ x e. ~H /\ B e. ~H ) -> ( x .ih ( A .h B ) ) = ( ( * ` A ) x. ( x .ih B ) ) ) |
9 |
8
|
3expa |
|- ( ( ( A e. CC /\ x e. ~H ) /\ B e. ~H ) -> ( x .ih ( A .h B ) ) = ( ( * ` A ) x. ( x .ih B ) ) ) |
10 |
9
|
an32s |
|- ( ( ( A e. CC /\ B e. ~H ) /\ x e. ~H ) -> ( x .ih ( A .h B ) ) = ( ( * ` A ) x. ( x .ih B ) ) ) |
11 |
|
braval |
|- ( ( B e. ~H /\ x e. ~H ) -> ( ( bra ` B ) ` x ) = ( x .ih B ) ) |
12 |
11
|
adantll |
|- ( ( ( A e. CC /\ B e. ~H ) /\ x e. ~H ) -> ( ( bra ` B ) ` x ) = ( x .ih B ) ) |
13 |
12
|
oveq2d |
|- ( ( ( A e. CC /\ B e. ~H ) /\ x e. ~H ) -> ( ( * ` A ) x. ( ( bra ` B ) ` x ) ) = ( ( * ` A ) x. ( x .ih B ) ) ) |
14 |
10 13
|
eqtr4d |
|- ( ( ( A e. CC /\ B e. ~H ) /\ x e. ~H ) -> ( x .ih ( A .h B ) ) = ( ( * ` A ) x. ( ( bra ` B ) ` x ) ) ) |
15 |
14
|
mpteq2dva |
|- ( ( A e. CC /\ B e. ~H ) -> ( x e. ~H |-> ( x .ih ( A .h B ) ) ) = ( x e. ~H |-> ( ( * ` A ) x. ( ( bra ` B ) ` x ) ) ) ) |
16 |
7 15
|
eqtr4d |
|- ( ( A e. CC /\ B e. ~H ) -> ( ( * ` A ) .fn ( bra ` B ) ) = ( x e. ~H |-> ( x .ih ( A .h B ) ) ) ) |
17 |
3 16
|
eqtr4d |
|- ( ( A e. CC /\ B e. ~H ) -> ( bra ` ( A .h B ) ) = ( ( * ` A ) .fn ( bra ` B ) ) ) |