Metamath Proof Explorer


Theorem brafval

Description: The bra of a vector, expressed as <. A | in Dirac notation. See df-bra . (Contributed by NM, 15-May-2006) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)

Ref Expression
Assertion brafval
|- ( A e. ~H -> ( bra ` A ) = ( x e. ~H |-> ( x .ih A ) ) )

Proof

Step Hyp Ref Expression
1 oveq2
 |-  ( y = A -> ( x .ih y ) = ( x .ih A ) )
2 1 mpteq2dv
 |-  ( y = A -> ( x e. ~H |-> ( x .ih y ) ) = ( x e. ~H |-> ( x .ih A ) ) )
3 df-bra
 |-  bra = ( y e. ~H |-> ( x e. ~H |-> ( x .ih y ) ) )
4 ax-hilex
 |-  ~H e. _V
5 4 mptex
 |-  ( x e. ~H |-> ( x .ih A ) ) e. _V
6 2 3 5 fvmpt
 |-  ( A e. ~H -> ( bra ` A ) = ( x e. ~H |-> ( x .ih A ) ) )