Step |
Hyp |
Ref |
Expression |
1 |
|
ax-his3 |
|- ( ( B e. CC /\ C e. ~H /\ A e. ~H ) -> ( ( B .h C ) .ih A ) = ( B x. ( C .ih A ) ) ) |
2 |
1
|
3comr |
|- ( ( A e. ~H /\ B e. CC /\ C e. ~H ) -> ( ( B .h C ) .ih A ) = ( B x. ( C .ih A ) ) ) |
3 |
|
hvmulcl |
|- ( ( B e. CC /\ C e. ~H ) -> ( B .h C ) e. ~H ) |
4 |
|
braval |
|- ( ( A e. ~H /\ ( B .h C ) e. ~H ) -> ( ( bra ` A ) ` ( B .h C ) ) = ( ( B .h C ) .ih A ) ) |
5 |
3 4
|
sylan2 |
|- ( ( A e. ~H /\ ( B e. CC /\ C e. ~H ) ) -> ( ( bra ` A ) ` ( B .h C ) ) = ( ( B .h C ) .ih A ) ) |
6 |
5
|
3impb |
|- ( ( A e. ~H /\ B e. CC /\ C e. ~H ) -> ( ( bra ` A ) ` ( B .h C ) ) = ( ( B .h C ) .ih A ) ) |
7 |
|
braval |
|- ( ( A e. ~H /\ C e. ~H ) -> ( ( bra ` A ) ` C ) = ( C .ih A ) ) |
8 |
7
|
3adant2 |
|- ( ( A e. ~H /\ B e. CC /\ C e. ~H ) -> ( ( bra ` A ) ` C ) = ( C .ih A ) ) |
9 |
8
|
oveq2d |
|- ( ( A e. ~H /\ B e. CC /\ C e. ~H ) -> ( B x. ( ( bra ` A ) ` C ) ) = ( B x. ( C .ih A ) ) ) |
10 |
2 6 9
|
3eqtr4d |
|- ( ( A e. ~H /\ B e. CC /\ C e. ~H ) -> ( ( bra ` A ) ` ( B .h C ) ) = ( B x. ( ( bra ` A ) ` C ) ) ) |