| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-his3 |  |-  ( ( B e. CC /\ C e. ~H /\ A e. ~H ) -> ( ( B .h C ) .ih A ) = ( B x. ( C .ih A ) ) ) | 
						
							| 2 | 1 | 3comr |  |-  ( ( A e. ~H /\ B e. CC /\ C e. ~H ) -> ( ( B .h C ) .ih A ) = ( B x. ( C .ih A ) ) ) | 
						
							| 3 |  | hvmulcl |  |-  ( ( B e. CC /\ C e. ~H ) -> ( B .h C ) e. ~H ) | 
						
							| 4 |  | braval |  |-  ( ( A e. ~H /\ ( B .h C ) e. ~H ) -> ( ( bra ` A ) ` ( B .h C ) ) = ( ( B .h C ) .ih A ) ) | 
						
							| 5 | 3 4 | sylan2 |  |-  ( ( A e. ~H /\ ( B e. CC /\ C e. ~H ) ) -> ( ( bra ` A ) ` ( B .h C ) ) = ( ( B .h C ) .ih A ) ) | 
						
							| 6 | 5 | 3impb |  |-  ( ( A e. ~H /\ B e. CC /\ C e. ~H ) -> ( ( bra ` A ) ` ( B .h C ) ) = ( ( B .h C ) .ih A ) ) | 
						
							| 7 |  | braval |  |-  ( ( A e. ~H /\ C e. ~H ) -> ( ( bra ` A ) ` C ) = ( C .ih A ) ) | 
						
							| 8 | 7 | 3adant2 |  |-  ( ( A e. ~H /\ B e. CC /\ C e. ~H ) -> ( ( bra ` A ) ` C ) = ( C .ih A ) ) | 
						
							| 9 | 8 | oveq2d |  |-  ( ( A e. ~H /\ B e. CC /\ C e. ~H ) -> ( B x. ( ( bra ` A ) ` C ) ) = ( B x. ( C .ih A ) ) ) | 
						
							| 10 | 2 6 9 | 3eqtr4d |  |-  ( ( A e. ~H /\ B e. CC /\ C e. ~H ) -> ( ( bra ` A ) ` ( B .h C ) ) = ( B x. ( ( bra ` A ) ` C ) ) ) |