Metamath Proof Explorer


Theorem braval

Description: A bra-ket juxtaposition, expressed as <. A | B >. in Dirac notation, equals the inner product of the vectors. Based on definition of bra in Prugovecki p. 186. (Contributed by NM, 15-May-2006) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion braval
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( bra ` A ) ` B ) = ( B .ih A ) )

Proof

Step Hyp Ref Expression
1 brafval
 |-  ( A e. ~H -> ( bra ` A ) = ( x e. ~H |-> ( x .ih A ) ) )
2 1 fveq1d
 |-  ( A e. ~H -> ( ( bra ` A ) ` B ) = ( ( x e. ~H |-> ( x .ih A ) ) ` B ) )
3 oveq1
 |-  ( x = B -> ( x .ih A ) = ( B .ih A ) )
4 eqid
 |-  ( x e. ~H |-> ( x .ih A ) ) = ( x e. ~H |-> ( x .ih A ) )
5 ovex
 |-  ( B .ih A ) e. _V
6 3 4 5 fvmpt
 |-  ( B e. ~H -> ( ( x e. ~H |-> ( x .ih A ) ) ` B ) = ( B .ih A ) )
7 2 6 sylan9eq
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( bra ` A ) ` B ) = ( B .ih A ) )