| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cic.i |  |-  I = ( Iso ` C ) | 
						
							| 2 |  | cic.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | cic.c |  |-  ( ph -> C e. Cat ) | 
						
							| 4 |  | cic.x |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | cic.y |  |-  ( ph -> Y e. B ) | 
						
							| 6 |  | cicfval |  |-  ( C e. Cat -> ( ~=c ` C ) = ( ( Iso ` C ) supp (/) ) ) | 
						
							| 7 | 3 6 | syl |  |-  ( ph -> ( ~=c ` C ) = ( ( Iso ` C ) supp (/) ) ) | 
						
							| 8 | 7 | breqd |  |-  ( ph -> ( X ( ~=c ` C ) Y <-> X ( ( Iso ` C ) supp (/) ) Y ) ) | 
						
							| 9 |  | df-br |  |-  ( X ( ( Iso ` C ) supp (/) ) Y <-> <. X , Y >. e. ( ( Iso ` C ) supp (/) ) ) | 
						
							| 10 | 9 | a1i |  |-  ( ph -> ( X ( ( Iso ` C ) supp (/) ) Y <-> <. X , Y >. e. ( ( Iso ` C ) supp (/) ) ) ) | 
						
							| 11 | 1 | a1i |  |-  ( ph -> I = ( Iso ` C ) ) | 
						
							| 12 | 11 | fveq1d |  |-  ( ph -> ( I ` <. X , Y >. ) = ( ( Iso ` C ) ` <. X , Y >. ) ) | 
						
							| 13 | 12 | neeq1d |  |-  ( ph -> ( ( I ` <. X , Y >. ) =/= (/) <-> ( ( Iso ` C ) ` <. X , Y >. ) =/= (/) ) ) | 
						
							| 14 |  | df-ov |  |-  ( X I Y ) = ( I ` <. X , Y >. ) | 
						
							| 15 | 14 | eqcomi |  |-  ( I ` <. X , Y >. ) = ( X I Y ) | 
						
							| 16 | 15 | a1i |  |-  ( ph -> ( I ` <. X , Y >. ) = ( X I Y ) ) | 
						
							| 17 | 16 | neeq1d |  |-  ( ph -> ( ( I ` <. X , Y >. ) =/= (/) <-> ( X I Y ) =/= (/) ) ) | 
						
							| 18 |  | fvexd |  |-  ( ph -> ( Base ` C ) e. _V ) | 
						
							| 19 | 18 18 | xpexd |  |-  ( ph -> ( ( Base ` C ) X. ( Base ` C ) ) e. _V ) | 
						
							| 20 | 4 2 | eleqtrdi |  |-  ( ph -> X e. ( Base ` C ) ) | 
						
							| 21 | 5 2 | eleqtrdi |  |-  ( ph -> Y e. ( Base ` C ) ) | 
						
							| 22 | 20 21 | opelxpd |  |-  ( ph -> <. X , Y >. e. ( ( Base ` C ) X. ( Base ` C ) ) ) | 
						
							| 23 |  | isofn |  |-  ( C e. Cat -> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) | 
						
							| 24 | 3 23 | syl |  |-  ( ph -> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) | 
						
							| 25 |  | fvn0elsuppb |  |-  ( ( ( ( Base ` C ) X. ( Base ` C ) ) e. _V /\ <. X , Y >. e. ( ( Base ` C ) X. ( Base ` C ) ) /\ ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( ( Iso ` C ) ` <. X , Y >. ) =/= (/) <-> <. X , Y >. e. ( ( Iso ` C ) supp (/) ) ) ) | 
						
							| 26 | 19 22 24 25 | syl3anc |  |-  ( ph -> ( ( ( Iso ` C ) ` <. X , Y >. ) =/= (/) <-> <. X , Y >. e. ( ( Iso ` C ) supp (/) ) ) ) | 
						
							| 27 | 13 17 26 | 3bitr3rd |  |-  ( ph -> ( <. X , Y >. e. ( ( Iso ` C ) supp (/) ) <-> ( X I Y ) =/= (/) ) ) | 
						
							| 28 | 8 10 27 | 3bitrd |  |-  ( ph -> ( X ( ~=c ` C ) Y <-> ( X I Y ) =/= (/) ) ) |