| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cic.i |  |-  I = ( Iso ` C ) | 
						
							| 2 |  | cic.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | cic.c |  |-  ( ph -> C e. Cat ) | 
						
							| 4 |  | cic.x |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | cic.y |  |-  ( ph -> Y e. B ) | 
						
							| 6 |  | cic.f |  |-  ( ph -> F e. ( X I Y ) ) | 
						
							| 7 |  | eleq1 |  |-  ( f = F -> ( f e. ( X I Y ) <-> F e. ( X I Y ) ) ) | 
						
							| 8 | 7 | spcegv |  |-  ( F e. ( X I Y ) -> ( F e. ( X I Y ) -> E. f f e. ( X I Y ) ) ) | 
						
							| 9 | 6 6 8 | sylc |  |-  ( ph -> E. f f e. ( X I Y ) ) | 
						
							| 10 | 1 2 3 4 5 | cic |  |-  ( ph -> ( X ( ~=c ` C ) Y <-> E. f f e. ( X I Y ) ) ) | 
						
							| 11 | 9 10 | mpbird |  |-  ( ph -> X ( ~=c ` C ) Y ) |