Description: The converse of the binary epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brcnvep | |- ( A e. V -> ( A `' _E B <-> B e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rele | |- Rel _E |
|
| 2 | 1 | relbrcnv | |- ( A `' _E B <-> B _E A ) |
| 3 | epelg | |- ( A e. V -> ( B _E A <-> B e. A ) ) |
|
| 4 | 2 3 | bitrid | |- ( A e. V -> ( A `' _E B <-> B e. A ) ) |