Step |
Hyp |
Ref |
Expression |
1 |
|
brcog |
|- ( ( A e. V /\ B e. W ) -> ( A ( `' R o. R ) B <-> E. z ( A R z /\ z `' R B ) ) ) |
2 |
|
vex |
|- z e. _V |
3 |
|
brcnvg |
|- ( ( z e. _V /\ B e. W ) -> ( z `' R B <-> B R z ) ) |
4 |
2 3
|
mpan |
|- ( B e. W -> ( z `' R B <-> B R z ) ) |
5 |
4
|
anbi2d |
|- ( B e. W -> ( ( A R z /\ z `' R B ) <-> ( A R z /\ B R z ) ) ) |
6 |
5
|
adantl |
|- ( ( A e. V /\ B e. W ) -> ( ( A R z /\ z `' R B ) <-> ( A R z /\ B R z ) ) ) |
7 |
6
|
exbidv |
|- ( ( A e. V /\ B e. W ) -> ( E. z ( A R z /\ z `' R B ) <-> E. z ( A R z /\ B R z ) ) ) |
8 |
1 7
|
bitrd |
|- ( ( A e. V /\ B e. W ) -> ( A ( `' R o. R ) B <-> E. z ( A R z /\ B R z ) ) ) |