Metamath Proof Explorer


Theorem brcog

Description: Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015)

Ref Expression
Assertion brcog
|- ( ( A e. V /\ B e. W ) -> ( A ( C o. D ) B <-> E. x ( A D x /\ x C B ) ) )

Proof

Step Hyp Ref Expression
1 breq1
 |-  ( y = A -> ( y D x <-> A D x ) )
2 breq2
 |-  ( z = B -> ( x C z <-> x C B ) )
3 1 2 bi2anan9
 |-  ( ( y = A /\ z = B ) -> ( ( y D x /\ x C z ) <-> ( A D x /\ x C B ) ) )
4 3 exbidv
 |-  ( ( y = A /\ z = B ) -> ( E. x ( y D x /\ x C z ) <-> E. x ( A D x /\ x C B ) ) )
5 df-co
 |-  ( C o. D ) = { <. y , z >. | E. x ( y D x /\ x C z ) }
6 4 5 brabga
 |-  ( ( A e. V /\ B e. W ) -> ( A ( C o. D ) B <-> E. x ( A D x /\ x C B ) ) )