Description: Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | brcog | |- ( ( A e. V /\ B e. W ) -> ( A ( C o. D ) B <-> E. x ( A D x /\ x C B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 | |- ( y = A -> ( y D x <-> A D x ) ) |
|
2 | breq2 | |- ( z = B -> ( x C z <-> x C B ) ) |
|
3 | 1 2 | bi2anan9 | |- ( ( y = A /\ z = B ) -> ( ( y D x /\ x C z ) <-> ( A D x /\ x C B ) ) ) |
4 | 3 | exbidv | |- ( ( y = A /\ z = B ) -> ( E. x ( y D x /\ x C z ) <-> E. x ( A D x /\ x C B ) ) ) |
5 | df-co | |- ( C o. D ) = { <. y , z >. | E. x ( y D x /\ x C z ) } |
|
6 | 4 5 | brabga | |- ( ( A e. V /\ B e. W ) -> ( A ( C o. D ) B <-> E. x ( A D x /\ x C B ) ) ) |