Step |
Hyp |
Ref |
Expression |
1 |
|
3simpa |
|- ( ( A e. V /\ B e. W /\ X e. Z ) -> ( A e. V /\ B e. W ) ) |
2 |
|
breq2 |
|- ( x = X -> ( A D x <-> A D X ) ) |
3 |
|
breq1 |
|- ( x = X -> ( x C B <-> X C B ) ) |
4 |
2 3
|
anbi12d |
|- ( x = X -> ( ( A D x /\ x C B ) <-> ( A D X /\ X C B ) ) ) |
5 |
4
|
spcegv |
|- ( X e. Z -> ( ( A D X /\ X C B ) -> E. x ( A D x /\ x C B ) ) ) |
6 |
5
|
imp |
|- ( ( X e. Z /\ ( A D X /\ X C B ) ) -> E. x ( A D x /\ x C B ) ) |
7 |
6
|
3ad2antl3 |
|- ( ( ( A e. V /\ B e. W /\ X e. Z ) /\ ( A D X /\ X C B ) ) -> E. x ( A D x /\ x C B ) ) |
8 |
|
brcog |
|- ( ( A e. V /\ B e. W ) -> ( A ( C o. D ) B <-> E. x ( A D x /\ x C B ) ) ) |
9 |
8
|
biimpar |
|- ( ( ( A e. V /\ B e. W ) /\ E. x ( A D x /\ x C B ) ) -> A ( C o. D ) B ) |
10 |
1 7 9
|
syl2an2r |
|- ( ( ( A e. V /\ B e. W /\ X e. Z ) /\ ( A D X /\ X C B ) ) -> A ( C o. D ) B ) |