| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3simpa |  |-  ( ( A e. V /\ B e. W /\ X e. Z ) -> ( A e. V /\ B e. W ) ) | 
						
							| 2 |  | breq2 |  |-  ( x = X -> ( A D x <-> A D X ) ) | 
						
							| 3 |  | breq1 |  |-  ( x = X -> ( x C B <-> X C B ) ) | 
						
							| 4 | 2 3 | anbi12d |  |-  ( x = X -> ( ( A D x /\ x C B ) <-> ( A D X /\ X C B ) ) ) | 
						
							| 5 | 4 | spcegv |  |-  ( X e. Z -> ( ( A D X /\ X C B ) -> E. x ( A D x /\ x C B ) ) ) | 
						
							| 6 | 5 | imp |  |-  ( ( X e. Z /\ ( A D X /\ X C B ) ) -> E. x ( A D x /\ x C B ) ) | 
						
							| 7 | 6 | 3ad2antl3 |  |-  ( ( ( A e. V /\ B e. W /\ X e. Z ) /\ ( A D X /\ X C B ) ) -> E. x ( A D x /\ x C B ) ) | 
						
							| 8 |  | brcog |  |-  ( ( A e. V /\ B e. W ) -> ( A ( C o. D ) B <-> E. x ( A D x /\ x C B ) ) ) | 
						
							| 9 | 8 | biimpar |  |-  ( ( ( A e. V /\ B e. W ) /\ E. x ( A D x /\ x C B ) ) -> A ( C o. D ) B ) | 
						
							| 10 | 1 7 9 | syl2an2r |  |-  ( ( ( A e. V /\ B e. W /\ X e. Z ) /\ ( A D X /\ X C B ) ) -> A ( C o. D ) B ) |