Description: The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | brdif | |- ( A ( R \ S ) B <-> ( A R B /\ -. A S B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif | |- ( <. A , B >. e. ( R \ S ) <-> ( <. A , B >. e. R /\ -. <. A , B >. e. S ) ) |
|
2 | df-br | |- ( A ( R \ S ) B <-> <. A , B >. e. ( R \ S ) ) |
|
3 | df-br | |- ( A R B <-> <. A , B >. e. R ) |
|
4 | df-br | |- ( A S B <-> <. A , B >. e. S ) |
|
5 | 4 | notbii | |- ( -. A S B <-> -. <. A , B >. e. S ) |
6 | 3 5 | anbi12i | |- ( ( A R B /\ -. A S B ) <-> ( <. A , B >. e. R /\ -. <. A , B >. e. S ) ) |
7 | 1 2 6 | 3bitr4i | |- ( A ( R \ S ) B <-> ( A R B /\ -. A S B ) ) |