Metamath Proof Explorer


Theorem brdom

Description: Dominance relation. (Contributed by NM, 15-Jun-1998)

Ref Expression
Hypothesis bren.1
|- B e. _V
Assertion brdom
|- ( A ~<_ B <-> E. f f : A -1-1-> B )

Proof

Step Hyp Ref Expression
1 bren.1
 |-  B e. _V
2 brdomg
 |-  ( B e. _V -> ( A ~<_ B <-> E. f f : A -1-1-> B ) )
3 1 2 ax-mp
 |-  ( A ~<_ B <-> E. f f : A -1-1-> B )