Metamath Proof Explorer


Theorem brdomi

Description: Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015) Avoid ax-un . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion brdomi
|- ( A ~<_ B -> E. f f : A -1-1-> B )

Proof

Step Hyp Ref Expression
1 reldom
 |-  Rel ~<_
2 1 brrelex12i
 |-  ( A ~<_ B -> ( A e. _V /\ B e. _V ) )
3 brdom2g
 |-  ( ( A e. _V /\ B e. _V ) -> ( A ~<_ B <-> E. f f : A -1-1-> B ) )
4 2 3 syl
 |-  ( A ~<_ B -> ( A ~<_ B <-> E. f f : A -1-1-> B ) )
5 4 ibi
 |-  ( A ~<_ B -> E. f f : A -1-1-> B )