| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brecop2.1 |
|- dom .~ = ( G X. G ) |
| 2 |
|
brecop2.2 |
|- H = ( ( G X. G ) /. .~ ) |
| 3 |
|
brecop2.3 |
|- R C_ ( H X. H ) |
| 4 |
|
brecop2.4 |
|- .<_ C_ ( G X. G ) |
| 5 |
|
brecop2.5 |
|- -. (/) e. G |
| 6 |
|
brecop2.6 |
|- dom .+ = ( G X. G ) |
| 7 |
|
brecop2.7 |
|- ( ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) -> ( [ <. A , B >. ] .~ R [ <. C , D >. ] .~ <-> ( A .+ D ) .<_ ( B .+ C ) ) ) |
| 8 |
3
|
brel |
|- ( [ <. A , B >. ] .~ R [ <. C , D >. ] .~ -> ( [ <. A , B >. ] .~ e. H /\ [ <. C , D >. ] .~ e. H ) ) |
| 9 |
|
ecelqsdm |
|- ( ( dom .~ = ( G X. G ) /\ [ <. A , B >. ] .~ e. ( ( G X. G ) /. .~ ) ) -> <. A , B >. e. ( G X. G ) ) |
| 10 |
1 9
|
mpan |
|- ( [ <. A , B >. ] .~ e. ( ( G X. G ) /. .~ ) -> <. A , B >. e. ( G X. G ) ) |
| 11 |
10 2
|
eleq2s |
|- ( [ <. A , B >. ] .~ e. H -> <. A , B >. e. ( G X. G ) ) |
| 12 |
|
opelxp |
|- ( <. A , B >. e. ( G X. G ) <-> ( A e. G /\ B e. G ) ) |
| 13 |
11 12
|
sylib |
|- ( [ <. A , B >. ] .~ e. H -> ( A e. G /\ B e. G ) ) |
| 14 |
|
ecelqsdm |
|- ( ( dom .~ = ( G X. G ) /\ [ <. C , D >. ] .~ e. ( ( G X. G ) /. .~ ) ) -> <. C , D >. e. ( G X. G ) ) |
| 15 |
1 14
|
mpan |
|- ( [ <. C , D >. ] .~ e. ( ( G X. G ) /. .~ ) -> <. C , D >. e. ( G X. G ) ) |
| 16 |
15 2
|
eleq2s |
|- ( [ <. C , D >. ] .~ e. H -> <. C , D >. e. ( G X. G ) ) |
| 17 |
|
opelxp |
|- ( <. C , D >. e. ( G X. G ) <-> ( C e. G /\ D e. G ) ) |
| 18 |
16 17
|
sylib |
|- ( [ <. C , D >. ] .~ e. H -> ( C e. G /\ D e. G ) ) |
| 19 |
13 18
|
anim12i |
|- ( ( [ <. A , B >. ] .~ e. H /\ [ <. C , D >. ] .~ e. H ) -> ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) ) |
| 20 |
8 19
|
syl |
|- ( [ <. A , B >. ] .~ R [ <. C , D >. ] .~ -> ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) ) |
| 21 |
4
|
brel |
|- ( ( A .+ D ) .<_ ( B .+ C ) -> ( ( A .+ D ) e. G /\ ( B .+ C ) e. G ) ) |
| 22 |
6 5
|
ndmovrcl |
|- ( ( A .+ D ) e. G -> ( A e. G /\ D e. G ) ) |
| 23 |
6 5
|
ndmovrcl |
|- ( ( B .+ C ) e. G -> ( B e. G /\ C e. G ) ) |
| 24 |
22 23
|
anim12i |
|- ( ( ( A .+ D ) e. G /\ ( B .+ C ) e. G ) -> ( ( A e. G /\ D e. G ) /\ ( B e. G /\ C e. G ) ) ) |
| 25 |
21 24
|
syl |
|- ( ( A .+ D ) .<_ ( B .+ C ) -> ( ( A e. G /\ D e. G ) /\ ( B e. G /\ C e. G ) ) ) |
| 26 |
|
an42 |
|- ( ( ( A e. G /\ D e. G ) /\ ( B e. G /\ C e. G ) ) <-> ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) ) |
| 27 |
25 26
|
sylib |
|- ( ( A .+ D ) .<_ ( B .+ C ) -> ( ( A e. G /\ B e. G ) /\ ( C e. G /\ D e. G ) ) ) |
| 28 |
20 27 7
|
pm5.21nii |
|- ( [ <. A , B >. ] .~ R [ <. C , D >. ] .~ <-> ( A .+ D ) .<_ ( B .+ C ) ) |