Metamath Proof Explorer


Theorem breldm

Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995)

Ref Expression
Hypotheses opeldm.1
|- A e. _V
opeldm.2
|- B e. _V
Assertion breldm
|- ( A R B -> A e. dom R )

Proof

Step Hyp Ref Expression
1 opeldm.1
 |-  A e. _V
2 opeldm.2
 |-  B e. _V
3 df-br
 |-  ( A R B <-> <. A , B >. e. R )
4 1 2 opeldm
 |-  ( <. A , B >. e. R -> A e. dom R )
5 3 4 sylbi
 |-  ( A R B -> A e. dom R )