Metamath Proof Explorer


Theorem breldmd

Description: Membership of first of a binary relation in a domain. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses breldmd.1
|- ( ph -> A e. C )
breldmd.2
|- ( ph -> B e. D )
breldmd.3
|- ( ph -> A R B )
Assertion breldmd
|- ( ph -> A e. dom R )

Proof

Step Hyp Ref Expression
1 breldmd.1
 |-  ( ph -> A e. C )
2 breldmd.2
 |-  ( ph -> B e. D )
3 breldmd.3
 |-  ( ph -> A R B )
4 breldmg
 |-  ( ( A e. C /\ B e. D /\ A R B ) -> A e. dom R )
5 1 2 3 4 syl3anc
 |-  ( ph -> A e. dom R )