Step |
Hyp |
Ref |
Expression |
1 |
|
brcnvg |
|- ( ( B e. G /\ A e. F ) -> ( B `' C A <-> A C B ) ) |
2 |
1
|
ancoms |
|- ( ( A e. F /\ B e. G ) -> ( B `' C A <-> A C B ) ) |
3 |
2
|
biimp3ar |
|- ( ( A e. F /\ B e. G /\ A C B ) -> B `' C A ) |
4 |
|
breldmg |
|- ( ( B e. G /\ A e. F /\ B `' C A ) -> B e. dom `' C ) |
5 |
4
|
3com12 |
|- ( ( A e. F /\ B e. G /\ B `' C A ) -> B e. dom `' C ) |
6 |
3 5
|
syld3an3 |
|- ( ( A e. F /\ B e. G /\ A C B ) -> B e. dom `' C ) |
7 |
|
df-rn |
|- ran C = dom `' C |
8 |
6 7
|
eleqtrrdi |
|- ( ( A e. F /\ B e. G /\ A C B ) -> B e. ran C ) |