| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brcnvg |  |-  ( ( B e. G /\ A e. F ) -> ( B `' C A <-> A C B ) ) | 
						
							| 2 | 1 | ancoms |  |-  ( ( A e. F /\ B e. G ) -> ( B `' C A <-> A C B ) ) | 
						
							| 3 | 2 | biimp3ar |  |-  ( ( A e. F /\ B e. G /\ A C B ) -> B `' C A ) | 
						
							| 4 |  | breldmg |  |-  ( ( B e. G /\ A e. F /\ B `' C A ) -> B e. dom `' C ) | 
						
							| 5 | 4 | 3com12 |  |-  ( ( A e. F /\ B e. G /\ B `' C A ) -> B e. dom `' C ) | 
						
							| 6 | 3 5 | syld3an3 |  |-  ( ( A e. F /\ B e. G /\ A C B ) -> B e. dom `' C ) | 
						
							| 7 |  | df-rn |  |-  ran C = dom `' C | 
						
							| 8 | 6 7 | eleqtrrdi |  |-  ( ( A e. F /\ B e. G /\ A C B ) -> B e. ran C ) |