Description: Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | breq1 | |- ( A = B -> ( A R C <-> B R C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 | |- ( A = B -> <. A , C >. = <. B , C >. ) |
|
2 | 1 | eleq1d | |- ( A = B -> ( <. A , C >. e. R <-> <. B , C >. e. R ) ) |
3 | df-br | |- ( A R C <-> <. A , C >. e. R ) |
|
4 | df-br | |- ( B R C <-> <. B , C >. e. R ) |
|
5 | 2 3 4 | 3bitr4g | |- ( A = B -> ( A R C <-> B R C ) ) |