Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996) (Proof shortened by Eric Schmidt, 4-Apr-2007)
Ref | Expression | ||
---|---|---|---|
Hypotheses | breq1i.1 | |- A = B |
|
breq12i.2 | |- C = D |
||
Assertion | breq12i | |- ( A R C <-> B R D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 | |- A = B |
|
2 | breq12i.2 | |- C = D |
|
3 | breq12 | |- ( ( A = B /\ C = D ) -> ( A R C <-> B R D ) ) |
|
4 | 1 2 3 | mp2an | |- ( A R C <-> B R D ) |