Description: Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | breq2 | |- ( A = B -> ( C R A <-> C R B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 | |- ( A = B -> <. C , A >. = <. C , B >. ) |
|
2 | 1 | eleq1d | |- ( A = B -> ( <. C , A >. e. R <-> <. C , B >. e. R ) ) |
3 | df-br | |- ( C R A <-> <. C , A >. e. R ) |
|
4 | df-br | |- ( C R B <-> <. C , B >. e. R ) |
|
5 | 2 3 4 | 3bitr4g | |- ( A = B -> ( C R A <-> C R B ) ) |