Metamath Proof Explorer


Theorem breqtri

Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999)

Ref Expression
Hypotheses breqtr.1
|- A R B
breqtr.2
|- B = C
Assertion breqtri
|- A R C

Proof

Step Hyp Ref Expression
1 breqtr.1
 |-  A R B
2 breqtr.2
 |-  B = C
3 2 breq2i
 |-  ( A R B <-> A R C )
4 1 3 mpbi
 |-  A R C