Description: Properties of a binary relation with a finite first component, proven by finite induction on the size of the first component. (Contributed by Alexander van der Vekens, 7-Jan-2018) (Revised by AV, 28-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | brfi1ind.r | |- Rel G |
|
brfi1ind.f | |- F e. _V |
||
brfi1ind.1 | |- ( ( v = V /\ e = E ) -> ( ps <-> ph ) ) |
||
brfi1ind.2 | |- ( ( v = w /\ e = f ) -> ( ps <-> th ) ) |
||
brfi1ind.3 | |- ( ( v G e /\ n e. v ) -> ( v \ { n } ) G F ) |
||
brfi1ind.4 | |- ( ( w = ( v \ { n } ) /\ f = F ) -> ( th <-> ch ) ) |
||
brfi1ind.base | |- ( ( v G e /\ ( # ` v ) = 0 ) -> ps ) |
||
brfi1ind.step | |- ( ( ( ( y + 1 ) e. NN0 /\ ( v G e /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) |
||
Assertion | brfi1ind | |- ( ( V G E /\ V e. Fin ) -> ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brfi1ind.r | |- Rel G |
|
2 | brfi1ind.f | |- F e. _V |
|
3 | brfi1ind.1 | |- ( ( v = V /\ e = E ) -> ( ps <-> ph ) ) |
|
4 | brfi1ind.2 | |- ( ( v = w /\ e = f ) -> ( ps <-> th ) ) |
|
5 | brfi1ind.3 | |- ( ( v G e /\ n e. v ) -> ( v \ { n } ) G F ) |
|
6 | brfi1ind.4 | |- ( ( w = ( v \ { n } ) /\ f = F ) -> ( th <-> ch ) ) |
|
7 | brfi1ind.base | |- ( ( v G e /\ ( # ` v ) = 0 ) -> ps ) |
|
8 | brfi1ind.step | |- ( ( ( ( y + 1 ) e. NN0 /\ ( v G e /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) |
|
9 | hashge0 | |- ( V e. Fin -> 0 <_ ( # ` V ) ) |
|
10 | 9 | adantl | |- ( ( V G E /\ V e. Fin ) -> 0 <_ ( # ` V ) ) |
11 | 0nn0 | |- 0 e. NN0 |
|
12 | 1 2 11 3 4 5 6 7 8 | brfi1uzind | |- ( ( V G E /\ V e. Fin /\ 0 <_ ( # ` V ) ) -> ph ) |
13 | 10 12 | mpd3an3 | |- ( ( V G E /\ V e. Fin ) -> ph ) |