Step |
Hyp |
Ref |
Expression |
1 |
|
brfi1uzind.r |
|- Rel G |
2 |
|
brfi1uzind.f |
|- F e. _V |
3 |
|
brfi1uzind.l |
|- L e. NN0 |
4 |
|
brfi1uzind.1 |
|- ( ( v = V /\ e = E ) -> ( ps <-> ph ) ) |
5 |
|
brfi1uzind.2 |
|- ( ( v = w /\ e = f ) -> ( ps <-> th ) ) |
6 |
|
brfi1uzind.3 |
|- ( ( v G e /\ n e. v ) -> ( v \ { n } ) G F ) |
7 |
|
brfi1uzind.4 |
|- ( ( w = ( v \ { n } ) /\ f = F ) -> ( th <-> ch ) ) |
8 |
|
brfi1uzind.base |
|- ( ( v G e /\ ( # ` v ) = L ) -> ps ) |
9 |
|
brfi1uzind.step |
|- ( ( ( ( y + 1 ) e. NN0 /\ ( v G e /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) |
10 |
1
|
brrelex12i |
|- ( V G E -> ( V e. _V /\ E e. _V ) ) |
11 |
|
simpl |
|- ( ( V e. _V /\ E e. _V ) -> V e. _V ) |
12 |
|
simplr |
|- ( ( ( V e. _V /\ E e. _V ) /\ a = V ) -> E e. _V ) |
13 |
|
breq12 |
|- ( ( a = V /\ b = E ) -> ( a G b <-> V G E ) ) |
14 |
13
|
adantll |
|- ( ( ( ( V e. _V /\ E e. _V ) /\ a = V ) /\ b = E ) -> ( a G b <-> V G E ) ) |
15 |
12 14
|
sbcied |
|- ( ( ( V e. _V /\ E e. _V ) /\ a = V ) -> ( [. E / b ]. a G b <-> V G E ) ) |
16 |
11 15
|
sbcied |
|- ( ( V e. _V /\ E e. _V ) -> ( [. V / a ]. [. E / b ]. a G b <-> V G E ) ) |
17 |
16
|
biimprcd |
|- ( V G E -> ( ( V e. _V /\ E e. _V ) -> [. V / a ]. [. E / b ]. a G b ) ) |
18 |
10 17
|
mpd |
|- ( V G E -> [. V / a ]. [. E / b ]. a G b ) |
19 |
|
vex |
|- v e. _V |
20 |
|
vex |
|- e e. _V |
21 |
|
breq12 |
|- ( ( a = v /\ b = e ) -> ( a G b <-> v G e ) ) |
22 |
19 20 21
|
sbc2ie |
|- ( [. v / a ]. [. e / b ]. a G b <-> v G e ) |
23 |
19
|
difexi |
|- ( v \ { n } ) e. _V |
24 |
|
breq12 |
|- ( ( a = ( v \ { n } ) /\ b = F ) -> ( a G b <-> ( v \ { n } ) G F ) ) |
25 |
23 2 24
|
sbc2ie |
|- ( [. ( v \ { n } ) / a ]. [. F / b ]. a G b <-> ( v \ { n } ) G F ) |
26 |
6 25
|
sylibr |
|- ( ( v G e /\ n e. v ) -> [. ( v \ { n } ) / a ]. [. F / b ]. a G b ) |
27 |
22 26
|
sylanb |
|- ( ( [. v / a ]. [. e / b ]. a G b /\ n e. v ) -> [. ( v \ { n } ) / a ]. [. F / b ]. a G b ) |
28 |
22 8
|
sylanb |
|- ( ( [. v / a ]. [. e / b ]. a G b /\ ( # ` v ) = L ) -> ps ) |
29 |
22
|
3anbi1i |
|- ( ( [. v / a ]. [. e / b ]. a G b /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) <-> ( v G e /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) |
30 |
29
|
anbi2i |
|- ( ( ( y + 1 ) e. NN0 /\ ( [. v / a ]. [. e / b ]. a G b /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) <-> ( ( y + 1 ) e. NN0 /\ ( v G e /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) ) |
31 |
30 9
|
sylanb |
|- ( ( ( ( y + 1 ) e. NN0 /\ ( [. v / a ]. [. e / b ]. a G b /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) |
32 |
2 3 4 5 27 7 28 31
|
fi1uzind |
|- ( ( [. V / a ]. [. E / b ]. a G b /\ V e. Fin /\ L <_ ( # ` V ) ) -> ph ) |
33 |
18 32
|
syl3an1 |
|- ( ( V G E /\ V e. Fin /\ L <_ ( # ` V ) ) -> ph ) |