| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brfvopab.1 |  |-  ( X e. _V -> ( F ` X ) = { <. y , z >. | ph } ) | 
						
							| 2 | 1 | breqd |  |-  ( X e. _V -> ( A ( F ` X ) B <-> A { <. y , z >. | ph } B ) ) | 
						
							| 3 |  | brabv |  |-  ( A { <. y , z >. | ph } B -> ( A e. _V /\ B e. _V ) ) | 
						
							| 4 | 2 3 | biimtrdi |  |-  ( X e. _V -> ( A ( F ` X ) B -> ( A e. _V /\ B e. _V ) ) ) | 
						
							| 5 | 4 | imdistani |  |-  ( ( X e. _V /\ A ( F ` X ) B ) -> ( X e. _V /\ ( A e. _V /\ B e. _V ) ) ) | 
						
							| 6 |  | 3anass |  |-  ( ( X e. _V /\ A e. _V /\ B e. _V ) <-> ( X e. _V /\ ( A e. _V /\ B e. _V ) ) ) | 
						
							| 7 | 5 6 | sylibr |  |-  ( ( X e. _V /\ A ( F ` X ) B ) -> ( X e. _V /\ A e. _V /\ B e. _V ) ) | 
						
							| 8 | 7 | ex |  |-  ( X e. _V -> ( A ( F ` X ) B -> ( X e. _V /\ A e. _V /\ B e. _V ) ) ) | 
						
							| 9 |  | fvprc |  |-  ( -. X e. _V -> ( F ` X ) = (/) ) | 
						
							| 10 |  | breq |  |-  ( ( F ` X ) = (/) -> ( A ( F ` X ) B <-> A (/) B ) ) | 
						
							| 11 |  | br0 |  |-  -. A (/) B | 
						
							| 12 | 11 | pm2.21i |  |-  ( A (/) B -> ( X e. _V /\ A e. _V /\ B e. _V ) ) | 
						
							| 13 | 10 12 | biimtrdi |  |-  ( ( F ` X ) = (/) -> ( A ( F ` X ) B -> ( X e. _V /\ A e. _V /\ B e. _V ) ) ) | 
						
							| 14 | 9 13 | syl |  |-  ( -. X e. _V -> ( A ( F ` X ) B -> ( X e. _V /\ A e. _V /\ B e. _V ) ) ) | 
						
							| 15 | 8 14 | pm2.61i |  |-  ( A ( F ` X ) B -> ( X e. _V /\ A e. _V /\ B e. _V ) ) |