Description: The relation "is isomorphic to" for groups. (Contributed by Stefan O'Rear, 25-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | brgic | |- ( R ~=g S <-> ( R GrpIso S ) =/= (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gic | |- ~=g = ( `' GrpIso " ( _V \ 1o ) ) |
|
2 | gimfn | |- GrpIso Fn ( Grp X. Grp ) |
|
3 | 1 2 | brwitnlem | |- ( R ~=g S <-> ( R GrpIso S ) =/= (/) ) |