Metamath Proof Explorer


Theorem brif2

Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024)

Ref Expression
Assertion brif2
|- ( C R if ( ph , A , B ) <-> if- ( ph , C R A , C R B ) )

Proof

Step Hyp Ref Expression
1 iftrue
 |-  ( ph -> if ( ph , A , B ) = A )
2 1 breq2d
 |-  ( ph -> ( C R if ( ph , A , B ) <-> C R A ) )
3 iffalse
 |-  ( -. ph -> if ( ph , A , B ) = B )
4 3 breq2d
 |-  ( -. ph -> ( C R if ( ph , A , B ) <-> C R B ) )
5 2 4 casesifp
 |-  ( C R if ( ph , A , B ) <-> if- ( ph , C R A , C R B ) )