Description: Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | brimralrspcev | |- ( ( B e. X /\ A. y e. Y ( ( ph /\ A R B ) -> ps ) ) -> E. x e. X A. y e. Y ( ( ph /\ A R x ) -> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | |- ( x = B -> ( A R x <-> A R B ) ) |
|
2 | 1 | anbi2d | |- ( x = B -> ( ( ph /\ A R x ) <-> ( ph /\ A R B ) ) ) |
3 | 2 | rspceaimv | |- ( ( B e. X /\ A. y e. Y ( ( ph /\ A R B ) -> ps ) ) -> E. x e. X A. y e. Y ( ( ph /\ A R x ) -> ps ) ) |