Description: Prove isomorphic by an explicit isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | brlmici | |- ( F e. ( R LMIso S ) -> R ~=m S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i | |- ( F e. ( R LMIso S ) -> ( R LMIso S ) =/= (/) ) |
|
2 | brlmic | |- ( R ~=m S <-> ( R LMIso S ) =/= (/) ) |
|
3 | 1 2 | sylibr | |- ( F e. ( R LMIso S ) -> R ~=m S ) |