Description: Prove isomorphic by an explicit isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brlmici | |- ( F e. ( R LMIso S ) -> R ~=m S )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ne0i | |- ( F e. ( R LMIso S ) -> ( R LMIso S ) =/= (/) )  | 
						|
| 2 | brlmic | |- ( R ~=m S <-> ( R LMIso S ) =/= (/) )  | 
						|
| 3 | 1 2 | sylibr | |- ( F e. ( R LMIso S ) -> R ~=m S )  |