Metamath Proof Explorer


Theorem brlmici

Description: Prove isomorphic by an explicit isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion brlmici
|- ( F e. ( R LMIso S ) -> R ~=m S )

Proof

Step Hyp Ref Expression
1 ne0i
 |-  ( F e. ( R LMIso S ) -> ( R LMIso S ) =/= (/) )
2 brlmic
 |-  ( R ~=m S <-> ( R LMIso S ) =/= (/) )
3 1 2 sylibr
 |-  ( F e. ( R LMIso S ) -> R ~=m S )