Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | brneqtrd.1 | |- ( ph -> -. A R B ) |
|
brneqtrd.2 | |- ( ph -> B = C ) |
||
Assertion | brneqtrd | |- ( ph -> -. A R C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brneqtrd.1 | |- ( ph -> -. A R B ) |
|
2 | brneqtrd.2 | |- ( ph -> B = C ) |
|
3 | 2 | breq2d | |- ( ph -> ( A R B <-> A R C ) ) |
4 | 1 3 | mtbid | |- ( ph -> -. A R C ) |