Metamath Proof Explorer


Theorem brneqtrd

Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses brneqtrd.1
|- ( ph -> -. A R B )
brneqtrd.2
|- ( ph -> B = C )
Assertion brneqtrd
|- ( ph -> -. A R C )

Proof

Step Hyp Ref Expression
1 brneqtrd.1
 |-  ( ph -> -. A R B )
2 brneqtrd.2
 |-  ( ph -> B = C )
3 2 breq2d
 |-  ( ph -> ( A R B <-> A R C ) )
4 1 3 mtbid
 |-  ( ph -> -. A R C )