Metamath Proof Explorer


Theorem brovmpoex

Description: A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017)

Ref Expression
Hypothesis brovmpoex.1
|- O = ( x e. _V , y e. _V |-> { <. z , w >. | ph } )
Assertion brovmpoex
|- ( F ( V O E ) P -> ( ( V e. _V /\ E e. _V ) /\ ( F e. _V /\ P e. _V ) ) )

Proof

Step Hyp Ref Expression
1 brovmpoex.1
 |-  O = ( x e. _V , y e. _V |-> { <. z , w >. | ph } )
2 1 relmpoopab
 |-  Rel ( V O E )
3 2 a1i
 |-  ( ( V e. _V /\ E e. _V ) -> Rel ( V O E ) )
4 1 3 brovex
 |-  ( F ( V O E ) P -> ( ( V e. _V /\ E e. _V ) /\ ( F e. _V /\ P e. _V ) ) )