Description: Binary partitions relation. (Contributed by Peter Mazsa, 30-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | brparts2 | |- ( ( A e. V /\ R e. W ) -> ( R Parts A <-> ( R e. Disjs /\ ( dom R /. R ) = A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brparts | |- ( A e. V -> ( R Parts A <-> ( R e. Disjs /\ R DomainQss A ) ) ) |
|
2 | 1 | adantr | |- ( ( A e. V /\ R e. W ) -> ( R Parts A <-> ( R e. Disjs /\ R DomainQss A ) ) ) |
3 | brdmqss | |- ( ( A e. V /\ R e. W ) -> ( R DomainQss A <-> ( dom R /. R ) = A ) ) |
|
4 | 3 | anbi2d | |- ( ( A e. V /\ R e. W ) -> ( ( R e. Disjs /\ R DomainQss A ) <-> ( R e. Disjs /\ ( dom R /. R ) = A ) ) ) |
5 | 2 4 | bitrd | |- ( ( A e. V /\ R e. W ) -> ( R Parts A <-> ( R e. Disjs /\ ( dom R /. R ) = A ) ) ) |