Metamath Proof Explorer


Theorem brparts2

Description: Binary partitions relation. (Contributed by Peter Mazsa, 30-Dec-2021)

Ref Expression
Assertion brparts2
|- ( ( A e. V /\ R e. W ) -> ( R Parts A <-> ( R e. Disjs /\ ( dom R /. R ) = A ) ) )

Proof

Step Hyp Ref Expression
1 brparts
 |-  ( A e. V -> ( R Parts A <-> ( R e. Disjs /\ R DomainQss A ) ) )
2 1 adantr
 |-  ( ( A e. V /\ R e. W ) -> ( R Parts A <-> ( R e. Disjs /\ R DomainQss A ) ) )
3 brdmqss
 |-  ( ( A e. V /\ R e. W ) -> ( R DomainQss A <-> ( dom R /. R ) = A ) )
4 3 anbi2d
 |-  ( ( A e. V /\ R e. W ) -> ( ( R e. Disjs /\ R DomainQss A ) <-> ( R e. Disjs /\ ( dom R /. R ) = A ) ) )
5 2 4 bitrd
 |-  ( ( A e. V /\ R e. W ) -> ( R Parts A <-> ( R e. Disjs /\ ( dom R /. R ) = A ) ) )