Description: Two classes related by a binary relation are sets. (Contributed by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brrelex12 | |- ( ( Rel R /\ A R B ) -> ( A e. _V /\ B e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel | |- ( Rel R <-> R C_ ( _V X. _V ) ) |
|
| 2 | 1 | biimpi | |- ( Rel R -> R C_ ( _V X. _V ) ) |
| 3 | 2 | ssbrd | |- ( Rel R -> ( A R B -> A ( _V X. _V ) B ) ) |
| 4 | 3 | imp | |- ( ( Rel R /\ A R B ) -> A ( _V X. _V ) B ) |
| 5 | brxp | |- ( A ( _V X. _V ) B <-> ( A e. _V /\ B e. _V ) ) |
|
| 6 | 4 5 | sylib | |- ( ( Rel R /\ A R B ) -> ( A e. _V /\ B e. _V ) ) |