Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | brrelexi.1 | |- Rel R |
|
Assertion | brrelex2i | |- ( A R B -> B e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | |- Rel R |
|
2 | brrelex2 | |- ( ( Rel R /\ A R B ) -> B e. _V ) |
|
3 | 1 2 | mpan | |- ( A R B -> B e. _V ) |