Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brres | |- ( C e. V -> ( B ( R |` A ) C <-> ( B e. A /\ B R C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelres | |- ( C e. V -> ( <. B , C >. e. ( R |` A ) <-> ( B e. A /\ <. B , C >. e. R ) ) ) |
|
| 2 | df-br | |- ( B ( R |` A ) C <-> <. B , C >. e. ( R |` A ) ) |
|
| 3 | df-br | |- ( B R C <-> <. B , C >. e. R ) |
|
| 4 | 3 | anbi2i | |- ( ( B e. A /\ B R C ) <-> ( B e. A /\ <. B , C >. e. R ) ) |
| 5 | 1 2 4 | 3bitr4g | |- ( C e. V -> ( B ( R |` A ) C <-> ( B e. A /\ B R C ) ) ) |