Metamath Proof Explorer


Theorem brres

Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022)

Ref Expression
Assertion brres
|- ( C e. V -> ( B ( R |` A ) C <-> ( B e. A /\ B R C ) ) )

Proof

Step Hyp Ref Expression
1 opelres
 |-  ( C e. V -> ( <. B , C >. e. ( R |` A ) <-> ( B e. A /\ <. B , C >. e. R ) ) )
2 df-br
 |-  ( B ( R |` A ) C <-> <. B , C >. e. ( R |` A ) )
3 df-br
 |-  ( B R C <-> <. B , C >. e. R )
4 3 anbi2i
 |-  ( ( B e. A /\ B R C ) <-> ( B e. A /\ <. B , C >. e. R ) )
5 1 2 4 3bitr4g
 |-  ( C e. V -> ( B ( R |` A ) C <-> ( B e. A /\ B R C ) ) )