Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opelresi.1 | |- C e. _V |
|
| Assertion | brresi | |- ( B ( R |` A ) C <-> ( B e. A /\ B R C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelresi.1 | |- C e. _V |
|
| 2 | brres | |- ( C e. _V -> ( B ( R |` A ) C <-> ( B e. A /\ B R C ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( B ( R |` A ) C <-> ( B e. A /\ B R C ) ) |