Metamath Proof Explorer


Theorem brric

Description: The relation "is isomorphic to" for (unital) rings. (Contributed by AV, 24-Dec-2019)

Ref Expression
Assertion brric
|- ( R ~=r S <-> ( R RingIso S ) =/= (/) )

Proof

Step Hyp Ref Expression
1 df-ric
 |-  ~=r = ( `' RingIso " ( _V \ 1o ) )
2 ovex
 |-  ( r RingHom s ) e. _V
3 rabexg
 |-  ( ( r RingHom s ) e. _V -> { h e. ( r RingHom s ) | `' h e. ( s RingHom r ) } e. _V )
4 2 3 mp1i
 |-  ( ( r e. _V /\ s e. _V ) -> { h e. ( r RingHom s ) | `' h e. ( s RingHom r ) } e. _V )
5 4 rgen2
 |-  A. r e. _V A. s e. _V { h e. ( r RingHom s ) | `' h e. ( s RingHom r ) } e. _V
6 df-rngiso
 |-  RingIso = ( r e. _V , s e. _V |-> { h e. ( r RingHom s ) | `' h e. ( s RingHom r ) } )
7 6 fnmpo
 |-  ( A. r e. _V A. s e. _V { h e. ( r RingHom s ) | `' h e. ( s RingHom r ) } e. _V -> RingIso Fn ( _V X. _V ) )
8 5 7 ax-mp
 |-  RingIso Fn ( _V X. _V )
9 1 8 brwitnlem
 |-  ( R ~=r S <-> ( R RingIso S ) =/= (/) )