Step |
Hyp |
Ref |
Expression |
1 |
|
brric |
|- ( R ~=r S <-> ( R RingIso S ) =/= (/) ) |
2 |
|
n0 |
|- ( ( R RingIso S ) =/= (/) <-> E. f f e. ( R RingIso S ) ) |
3 |
|
rimrcl |
|- ( f e. ( R RingIso S ) -> ( R e. _V /\ S e. _V ) ) |
4 |
|
isrim0 |
|- ( ( R e. _V /\ S e. _V ) -> ( f e. ( R RingIso S ) <-> ( f e. ( R RingHom S ) /\ `' f e. ( S RingHom R ) ) ) ) |
5 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
6 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
7 |
5 6
|
isrhm |
|- ( f e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( f e. ( R GrpHom S ) /\ f e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) ) |
8 |
7
|
simplbi |
|- ( f e. ( R RingHom S ) -> ( R e. Ring /\ S e. Ring ) ) |
9 |
8
|
adantr |
|- ( ( f e. ( R RingHom S ) /\ `' f e. ( S RingHom R ) ) -> ( R e. Ring /\ S e. Ring ) ) |
10 |
4 9
|
syl6bi |
|- ( ( R e. _V /\ S e. _V ) -> ( f e. ( R RingIso S ) -> ( R e. Ring /\ S e. Ring ) ) ) |
11 |
3 10
|
mpcom |
|- ( f e. ( R RingIso S ) -> ( R e. Ring /\ S e. Ring ) ) |
12 |
11
|
exlimiv |
|- ( E. f f e. ( R RingIso S ) -> ( R e. Ring /\ S e. Ring ) ) |
13 |
12
|
pm4.71ri |
|- ( E. f f e. ( R RingIso S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ E. f f e. ( R RingIso S ) ) ) |
14 |
1 2 13
|
3bitri |
|- ( R ~=r S <-> ( ( R e. Ring /\ S e. Ring ) /\ E. f f e. ( R RingIso S ) ) ) |