Metamath Proof Explorer


Theorem brric2

Description: The relation "is isomorphic to" for (unital) rings. This theorem corresponds to Definition df-risc of the ring isomorphism relation in JM's mathbox. (Contributed by AV, 24-Dec-2019)

Ref Expression
Assertion brric2
|- ( R ~=r S <-> ( ( R e. Ring /\ S e. Ring ) /\ E. f f e. ( R RingIso S ) ) )

Proof

Step Hyp Ref Expression
1 brric
 |-  ( R ~=r S <-> ( R RingIso S ) =/= (/) )
2 n0
 |-  ( ( R RingIso S ) =/= (/) <-> E. f f e. ( R RingIso S ) )
3 rimrhm
 |-  ( f e. ( R RingIso S ) -> f e. ( R RingHom S ) )
4 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
5 eqid
 |-  ( mulGrp ` S ) = ( mulGrp ` S )
6 4 5 isrhm
 |-  ( f e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( f e. ( R GrpHom S ) /\ f e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) )
7 6 simplbi
 |-  ( f e. ( R RingHom S ) -> ( R e. Ring /\ S e. Ring ) )
8 3 7 syl
 |-  ( f e. ( R RingIso S ) -> ( R e. Ring /\ S e. Ring ) )
9 8 exlimiv
 |-  ( E. f f e. ( R RingIso S ) -> ( R e. Ring /\ S e. Ring ) )
10 9 pm4.71ri
 |-  ( E. f f e. ( R RingIso S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ E. f f e. ( R RingIso S ) ) )
11 1 2 10 3bitri
 |-  ( R ~=r S <-> ( ( R e. Ring /\ S e. Ring ) /\ E. f f e. ( R RingIso S ) ) )